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Abstract

The angular multigrid method, previously developed for the acceleration of one-dimensional slab
geometry SN equations with highly forward-peaked scattering, is extended to multidimensional ge-
ometries. Analysis and testing shows that a straightforward extension to these geometries is unstable.
However, we apply a diffusive filter to the multigrid corrections to create a modified method that is
stable and effective for the acceleration of highly forward-peaked scattering transport iterations in
multidimensional geometries.

1 Introduction

Many transport problems are characterized by highly forward-peaked anisotropic scattering. Such
problems include, for example, the transport of charged particles such as ions and electrons. In
these problems the Legendre expansion of the scattering cross section consists of numerous scattering
moments of comparable magnitude; the magnitude decreases slowly as a function of cross section
order. In particular, many physical cross sections are closely approximated by the Fokker-Planck
cross section expansion (Pomraning, 1992).

The approximate solution of such problems by the discrete ordinates (SN ) method can be difficult
to obtain due to the ineffectiveness of standard acceleration schemes. For example, the diffusion
synthetic acceleration (DSA) method, which accelerates the zeroth (Larsen, 1984) or the zeroth and
first (Morel, 1982) flux moments, yields at best an iterative spectral radius of unity in the limit of
highly forward-peaked scattering. The ineffectiveness of these methods for such problems stems from
the fact that many of the higher order moments of the iterative error are not significantly attenuated
by source iteration. Thus an effective acceleration scheme must calculate corrections for these higher
order error modes.

One acceleration scheme that has been found to be effective for highly forward-peaked scattering
in one-dimensional slab geometry is the angular multigrid (ANMG) method (Morel, 1991). In this
scheme a high order SN calculation is accelerated by a series of increasingly lower order transport
sweeps and then by DSA as the final step. At each step the cross sections are manipulated so that
the corresponding transport sweep provides good attenuation of the moments that are not accelerated
by lower order steps; the net effect is effective acceleration of modes of all orders. In this paper we
extend the angular multigrid method to multidimensional transport problems.



2 The Multidimensional Angular Multigrid Method

Before defining the general angular multigrid method for multidimensional SN calculations of arbi-
trary order, we will first describe its application to an S8 calculation. The ANMG scheme for S8
calculations is a four-grid scheme:

1. Perform a transport sweep for the S8 equations.

2. Perform a transport sweep for the S4 equations with a P4 (or P5) expansion for the S8 residual
as the inhomogeneous source. The order of the expansion depends on the dimensionality of the
problem and is a consequence of the fact that a Galerkin quadrature (Morel, 1989) must be
used.

3. Perform a transport sweep for the S2 equations with a P2 (or P3) expansion for the S4 residual
as the inhomogeneous source.

4. Solve the diffusion equation with a P0 expansion for the S2 residual as the inhomogeneous
source.

5. Apply a diffusive filter to the corrections from steps 2 and 3.

6. Add the corrections from steps 4 and 5 to the Legendre moments of the S8 iterate to obtain
the accelerated S8 moments.

The above scheme differs somewhat from the slab geometry ANMG scheme. In step 4 above we
use the standard DSA scheme that accelerates only the zeroth moment, since it has been shown that
the DSA scheme that accelerates both the zeroth and first moments is unstable in multidimensional
geometries for highly forward-peaked scattering (Adams, 1993). We compensate for the loss of a
more effective DSA scheme by using an S2 sweep as the lowest order transport sweep, whereas the
original ANMG scheme uses an S4 sweep as its lowest order sweep. In step 5 we apply a diffusive
filter to the corrections from the lower order transport sweeps. This filtering step is necessary because
our analysis (described in the next section) shows that without it the ANMG scheme ampilifies rather
than damps high-frequency error modes. The diffusion operator is known to smooth such modes,
and we take advantage of that property here. Finally, note the use of Galerkin quadratures and cross
section expansions of higher order than is standard. The necessity of their use is shown in a companion
paper in these proceedings (Pautz, 1999).

The equations corresponding to the steps above are:

[
 �r+ �t]8	
(l+ 1

2
)

8 = M8�8�
(l)

8 + q; (1a)

�
(l+ 1

2
)

8 = D8	
(l+ 1

2
)

8 ; (1b)

[
 �r+ �t]4	
(l)

4 = M4P8!4�8

�
�
(l+ 1

2
)

8 � �
(l)

8

�
; (1c)

�(l)
4 = D4	

(l)
4 ; (1d)

[
 �r+ �t]2	
(l)

2 = M2P4!2�4

�
�(l)

4

�
; (1e)



�
(l)

2 = D2	
(l)

2 ; (1f)

�
�r �

1

3�t;2

r+ �a

�
f
(l)

0 = P2!0�2�
(l)

2 ; (1g)

�
�r �

�f

3�f

r+ �f

�
f
(l)
corr = �f

h
�
(l)

4 + P2!4�
(l)

2

i
; (1h)

�(l+1)

8 = �
(l+ 1

2
)

8 + P4!8f
(l)
corr + P0!8f

(l)

0 ; (1i)

where MN and DN are the moments-to-discrete and discrete-to-moments matrices for the Nth-order
quadrature set, �N is the scattering cross section matrix at level N , PN!N 0 is the restriction (pro-
longation) operator from level N to level N 0, �f is the filter cross section, and �f is the filter tuning
parameter. The remaining quantities are defined in the original angular multigrid paper (Morel, 1991).

The effectiveness of the ANMG scheme depends on how well it attenuates the highest order moments
at each level. To increase the attenuation we use the extended transport correction (Lathrop, 1965)
at each level. In the extended transport correction we subtract a constant from all scattering cross
section moments:

�
�

n = �n � �corr; n � L: (2)

where L is the expansion order. If the Galerkin quadrature is used, the above “correction” has no effect
on the converged solution at any level, but it will alter the rate of iterative convergence (Morel, 1991).
The invariance of the solution can be seen by taking moments of the discrete-ordinates transport
equations to produce an equivalent set of equations for angular moments. In these equations the � corr

term cancels out and thus has no effect on the solution. We choose �corr such that the upper half of
the moments at any level are attenuated as much as possible.

In the general ANMG scheme an SN calculation is accelerated by an SN 0 sweep, in which N
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The SN 0 sweep is in turn accelerated by a transport sweep of order Half (N 0). This process continues
through successively lower transport sweep orders; the final steps are an S2 sweep, DSA, filtering of
the sweep corrections, and adding of the corrections to the SN flux iterates.

3 Fourier Analysis

In order to determine the effectiveness and stability of the ANMG scheme we perform a series of
Fourier analyses. We examine an infinite, homogeneous medium in two-dimensional Cartesian ge-
ometry and subtract Eqs. (1) from the analogous equations for the converged solution; this produces
equations that are satisfied by iteration errors. We assume that the error in a given iterate can be
decomposed into modes of the form e

i��r, where r is the spatial location and � is the wave number of
a particular Fourier mode. We substitute this ansatz into the equations satisfied by the iteration errors
and obtain an eigenvalue problem. The set of eigenvalues obtained for each � determines the rate at
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Figure 1: Fourier analysis of S8-DSA iteration, optimized Fokker-Planck scattering.

which errors will be attenuated or grow. For an iterative scheme to be stable the absolute value of all
eigenvalues for all � must be less than unity; for an iterative scheme to be effective their magnitudes
must be bounded well below unity.

To demonstrate the use of Fourier analyses and to show the need for the ANMG acceleration scheme
we examine the spatially analytic S8 equations with source iteration and DSA applied to a medium
with Fokker-Planck (FP) scattering and no absorption. The FP scattering kernel closely approximates
many physical forward-peaked cross sections; it is given by

�n =
�tr

2
[L (L� 1)� n (n + 1)] ; (4)

where �tr is the transport (or momentum transfer) cross section (Morel, 1981). In Figure 1 we plot the
eigenvalue of greatest magnitude for each Fourier mode (the modal spectral radius) for this problem;
j�j is measured in transport mean free paths. Note that the high frequency modes are relatively well
attenuated by this iteration, whereas the low frequency modes are barely attenuated at all. The overall
spectral radius � for this iteration is 0.97, which is fairly close to unity. (The spectral radius is the
maximum of all modal spectral radii.)

In Figure 2 we plot the results of the Fourier analysis for the ANMG accelerated S8 scheme in which
we neglect to filter the corrections as in Eq. (1h) and instead add the unfiltered corrections directly
to the flux iterates. Although the low frequency modes are well attenuated now, we have introduced
instabilities in some high frequency modes. That is, this iterative method diverges for the model
problem.

We now see the motivation for diffusively filtering the corrections. As shown in Figure 1, the high
frequency modes are relatively well attenuated by source iteration alone; they do not need any cor-
rections from the ANMG scheme. However, low frequency modes are well attenuated by the ANMG
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Figure 2: Fourier analysis of S8-S4-S2-DSA iteration, optimized FP scattering.
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Figure 3: Fourier analysis of S8-S4-S2-DSA-filter iteration, optimized FP scattering (�f = 1; �f =
�t;8).



scheme. In order to keep the ANMG corrections at low frequencies but to discard them at high fre-
quencies we “filter” them with a diffusion operator. Consider the solution of a diffusion problem with
a source of wave number �: h
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Given an input amplitude A, the “diffusively filtered” amplitude is:
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Modes with large enough j�j (high frequency) are strongly attenuated while low-frequency modes
are not. A small value of the “filter cross section” �f will increase the attenuation, whereas a large
value will cause only very high frequency modes to be attenuated. In Figure 3 we plot the results of
the Fourier analyses of the filtered ANMG scheme in which we have arbitrarily chosen �f = 1 and
�f = �t;8. This iteration is stable and effective; the spectral radius is 0.85.

In Tables 1 and 2 we list the spectral radius for filtered ANMG schemes applied to transport calcu-
lations of various orders using a filter tuning parameter of unity and a filter cross section equal to
the total cross section and to the transport cross section, respectively. The total cross section does
not make a good filter cross section for calculations of general order. The total cross section of a
Fokker-Planck kernel increases in magnitude as the order of the calculation is increased, thus increas-
ing the range of frequencies allowed to pass through the filter, which at high enough orders permits
instabilities to reappear. Although we could stabilize this scheme for any fixed calculation order by
increasing the value of �f , no fixed value of the filter tuning parameter will stabilize calculations of
arbitrary order when the total cross section is used as the filter cross section. However, the transport
cross section remains constant as the scattering order is increased, and as Table 2 shows it appears
to work well as a filter cross section when �f = 1. We have not attempted to optimize the value of
�f . We note that the spectral radii obtained by the ANMG method can still be somewhat large for
high-order quadrature sets, but they are much better than those obtained by the use of DSA alone.

We have also performed Fourier analyses of the ANMG scheme applied to spatially discrete SN

equations. We report here the results of the analyses of the bilinear discontinuous (BLD) finite element
method on rectangles (Adams, 1991), with the DSA method of Wareing, Larsen, and Adams (WLA)
(Wareing, 1991), as modified by Wareing (Wareing, 1999) as a DSA and filter operator. In spatially
discrete Fourier analyses we obtain a spectral radius for each set of values of rectangle dimensions.
Results for the S8 ANMG scheme without and with filtering are shown in Tables 3 and 4, respectively.
For optically thin cells we observe that the unfiltered scheme is unstable, as it was in the spatially
analytic case, whereas the filtered scheme is stable. (We remark that the relatively large spectral radii
for cells with high aspect ratios are caused by the particular DSA discretization (WLA) used and not
by the ANMG part of the iteration. The WLA DSA discretization is known to degrade in this way,
even for problems with isotropic scattering.) However, for cells of moderate or large optical thickness
the ANMG scheme is stable whether or not filtering is applied. The reason that the method is stable
for thicker cells even without filtering is that there is an upper limit on the frequency of error modes
that can be supported in spatially discrete problems; potentially unstable modes simply do not exist if
the cells are sufficiently thick.



Table 1: Spectral Radii of Filtered SN -ANMG Iterations (�f = 1, �f = �t;N )

N �

4 0.65
6 0.63
8 0.85
10 0.95
12 1.04
14 1.32

Table 2: Spectral Radii of Filtered SN -ANMG Iterations (�f = 1, �f = �tr)

N �

4 0.70
6 0.81
8 0.86
10 0.90
12 0.92
14 0.94

Table 3: Fourier Analysis Results, BLD S8-S4-S2-DSA (WLA) Iteration, Optimized FP Scattering

�tr�y
�tr�x .01 1 100

.01 1.53
1 0.64 0.64

100 0.99 0.98 0.71

Table 4: Fourier Analysis Results, BLD S8-S4-S2-DSA-filter (WLA) Iteration, Optimized FP Scatter-
ing, (�f = 1; �f = �t;8)

�tr�y
�tr�x .01 1 100

.01 0.90
1 0.83 0.64

100 0.998 0.98 0.71



Table 5: Numerical Spectral Radii, BLD S8-S4-S2-DSA (WLA) Iteration, Optimized FP Scattering

�tr�y
�tr�x .01 1 100

.01 1.48
1 0.62 0.64

100 0.97 0.98 0.71

Table 6: Numerical Spectral Radii, BLD S8-S4-S2-DSA-filter (WLA) Iteration, Optimized FP Scat-
tering

�tr�y
�tr�x .01 1 100

.01 0.74
1 0.83 0.64

100 0.99 0.98 0.71

4 Numerical Results

In order to confirm the Fourier analyses of the previous section, we use the transport code PERICLES,
an unstructured mesh discrete ordinates code under development at Los Alamos National Laboratory
(Wareing, 1999). For each calculation we use a rectangular mesh with as many elements as neces-
sary or as computationally feasible to minimize leakage. In Tables 5 and 6 we list the numerically
observed spectral radii from PERICLES for a BLD calculation with S8 quadrature accelerated by the
ANMG method without and with filtering, respectively. The numerical results compare well with the
theoretical ones in Tables 3 and 4.

As a demonstration of the utility of ANMG acceleration in realistic calculations we apply it to a
coupled electron-photon problem. The problem to be solved consists of a 30 mil � 60 mil aluminum
shield, on one side of which an isotropic, monoenergetic source of electrons is incident. The energy
of the incident electrons is in the range 1-4 MeV. This problem was previously reported by Seltzer
(Seltzer, 1979) and by Datta et al. (Datta, 1996). We divide the shield into a 20 � 40 mesh of square
elements, use an S12 Galerkin quadrature, and use CEPXS cross sections (Lorence, 1989) with 20
electron and 20 photon groups of uniform width with a cutoff energy of 50 keV. We also use linear
discontinuous differencing of the continuous slowing down (CSD) operator. The calculated dose

Table 7: ANMG and DSA Performance, Electron-Photon Test Problem, LD-CSD Operator

Incident Iterations, Iterations, Inner Inner Total Total
Energy [MeV] ANMG DSA CPU [s], CPU [s], CPU [s], CPU [s],

ANMG DSA ANMG DSA
1 211 710 5403 14138 19517 27703
2 215 665 5501 13278 19569 26900
3 207 614 5226 12284 19094 25910
4 207 579 5238 11636 19124 25235



profile for 1 MeV incident electrons is shown in Figure 4. In Table 7 we report the timing results
for this calculation with the unfiltered ANMG scheme and with DSA alone. The DSA and ANMG
iterative methods are applied only to the within-group or “inner” iteration; neither method attempts
to speed the calculation of group-to-group scattering. Thus, the most significant comparisons are
total iterations and CPU time spent performing inner iterations. The table shows that although each
ANMG iteration costs slightly more than a DSA iteration, it is still faster by a factor of 2 or 3. Overall
run time was not reduced by as large a factor, because in this particular problem the downscattering
calculation time is a major component of the total CPU time.
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Figure 4: Dose in aluminum shield, 1 MeV incident electrons.

We have conducted other numerical tests that are not reported here. These tests include three-
dimensional calculations of model problems and two-dimensional calculations of multimaterial prob-
lems. In all cases the ANMG scheme is more effective than DSA alone, and vastly more effective
than simple source iteration, which is simply too slow to be of practical utility.

5 Conclusions

We have extended the angular multigrid method to multidimensional SN calculations. Provided that
the ANMG corrections are diffusively filtered or that the spatial cells are sufficiently thick, the ANMG
scheme is stable and effective when scattering is highly forward-peaked. This has been shown by
Fourier analyses of model problems, computations of model problems, and computations of realistic
problems.

There are some areas of research that warrant further attention. The ANMG method makes use of
diffusion operators for DSA and for filtering; the method could be improved if more effective or more
easily solved diffusion operators were found. It seems likely that one could also eliminate the need
for filtering if a combined angular and spatial multigrid were developed, since a sufficiently coarsened
spatial mesh would not produce instabilities at high frequencies.
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